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OPTIMIZATION OF THE STRUCTURE OF A VIBRATION SHIELD UNDER THE INFLUENCE 

OF A CONCENTRATED HARMONIC LOAD 

K. S. Adamova and M. A. Kasnibolotskii UDC 534.11+539.4 

When waves strike the interface between media with different physicomechanical proper- 
ties, a system of reflected and refracted waves is formed in the laminated medium. By 
changing the number, size, and material of the layers, it is possible to control the inten- 
sity of the spectrum of the wave process. There naturally arises the problem of optimizing 
the structure of the laminated medium with different optimization criteria and different 
constraints on the characteristics of the wave process. Several studies [i-5] have examined 
aspects of optimization of the structure of multilayered sound-reflecting shields when the 
materials of the layers are chosen from a certain group. Investigators have examined both 
the case of normal incidence of an acoustic plane wave and oblique incidence. If neither 
the number nor the arrangement of the constituent materials is specified beforehand, then 
the optimization problem is formulated within the framework of the theory of optimum con- 
trol. Pontryagin's maximum principle and variational methods have been used to derive the 
necessary optimization conditions and construct algorithms for numerical calculations. The 
same methods, generalized in [5], have also been used to optimize the design of a freely 
oscillating laminated thick-walled sphere of minimum weight [6], in several problems involv- 
ing the static therm0elasticity of thick-walled spherical vessels [7, 8], and in the design 
of laminated thermal insulation [5, 9, i0] and wave-type electromagnetic filters [2]. In 
each of these studies, the spectral characteristics of the wave process depended on one 
space variable and were described by ordinary differential equations. 

In the present study, we examine the steady vibration of a plane elastic laminated 
shield which is rigidly connected to an elastic half-space and is subjected to a concen- 
trated harmonic load. We need to optimize the structure of the shield so as to minimize 
total wave-energy flux in the half-space. The spectral characteristics of the wave pro- 
cess will depend on two space variables and will be described by partial differential equa- 
tions. By using the Hankel transform [ii] with respect to the radial coordinate, it is 
possible to formulate the corresponding optimization problem for transforms that can be 
described by a system of ordinary differential equations. We obtain the necessary optimiza- 
tion conditions, propose an algorithm, and present examples of numerical calculations. 

i. Formulation of the Problem. We will examine the steady-state vibration of an 
elastic laminated shield of thickness I > 0. The shield is rigidly connected to an elastic 
half-space z > Z, and is subjected to a concentrated harmonic force (see Fig. i). Choosing 
from a finite number of elastic materials, we need to synthesize a laminated shield occupy- 
ing the region 0 ~ z ~ Z. The shield must be designed so as to minimize the total energy 
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flux in the half-space z > I. The formulation of this optimization problem in terms of 
optimum control theory involves description of the control system, the set of control vari- 
ables, the functionals in the minimization criterion, and the constraints. 

The equations of the physical process will serve as the system being controlled. In 
the given case, these are the equations of steady vibration of the laminated half-space. 
Written in a cylindrical coordinate system at r > O, 0 ~ z ~ ~, these equations take the 
following form [Ii] for the case of axial symmetry {the multiplier exp (iwt) is omitted] 

oG+ or+ 2~ o ( a _  ova) 
Or + ~ + - f -  ~ - -  2~ -N--~ j + P~~ = O, 

oa+ _ ! _ o (  2 o (rr-)+p~o~-v~ 0, o. + ~ r r + )  + - ; - ~ ;  = 
( 1 . 1 )  

where 

= 2~ ~ + ~ O (rUT) 4- ~TZJ" = ~ t-DT"z 4- -577' 

The conditions on the boundaries of the layers at z > 0 follow from the requirements 
of continuity of the complex amplitudes of the components U r and U z of the displacement 

= G + and shear Ozr vector and the continuity of the normal Ozz = F+ components of the 
stress vector: 

[v , ]  = [v~] = [G +] = [r+l = 0. 
( 1 , 2 )  

S i n c e  we a r e  e x a m i n i n g  a s u r f a c e  s o u r c e  i n  t h e  f o r m  o f  a n o r m a l  c o n c e n t r a t e d  f o r c e  R e [ f ( r ) "  
exp(i~t)], we write the boundary conditions at z = 0 in the form [ii] 

P0 6(r), r+(r,  0 ) = 0 .  (1.3) G + ( r , 0 ) = / ( r ) = 2 ~  7 

The Lame c o n s t a n t s  X and  ~ i n  ( 1 . 1 )  a r e  p i e c e w i s e - c o n s t a n t  f u n c t i o n s  o f  t h e  c o o r d i n a t e  z .  
Boundary-value problem (i.i)-(1.3) is augmented by the condition of radiation at infinity 
[12]. 

The set of control variables in the problem is the set of all possible laminated struc- 
tures of thickness l, These structures can be composed of the given set of initial materi- 
als. We proceed as follows to describe this set. We place each material in correspondence 
with the serial number indicating its position in the set. We introduce the characteristic 
function of the laminated medium u(z). At each point z ~ [0, l], this function takes a 
whole-number value equal to the serial number of the material located at the given point. 
The function u(z) belongs to the class of piecewise-constant functions 

U(Z) : {US[Z s < Z ~ Z S + I }  , 3 = 1 . . . . .  I ;  Z 1 = 0, ZS+ 1 = l, (1.4) 

the range of values of these functions consisting of whole numbers from 1 to m 

u~ ~ (I . . . . .  ~) = A, ( 1 . 5 )  

w h e r e  z s ( s  = 2 . . . . .  I )  a r e  t h e  i n t e r f a c e s  b e t w e e n  t h e  l a y e r s ;  I i s  t h e  n u m b e r  o f  l a y e r s ;  
m i s  t h e  n u m b e r  o f  i n i t i a l  m a t e r i a l s .  S i n c e  a o n e - t o - o n e  c o r r e s p o n d e n c e  c a n  be  e s t a b l i s h e d  
b e t w e e n  t h e  s e t  o f  l a m i n a t e d  s t r u c t u r e s  a n d  t h e  s e t  o f  f u n c t i o n s  u ( z ) ,  we c h o o s e  t h e  c h a r a c -  
t e r i s t i c  function of the laminated medium (1.4)-(1.5) as the control function. The domain 
of u(z) unambiguously determines the number, size, and arrangement of the materials of the 
layers. It is evident that X = X[u(z)], ~ = D[u(z)], p = p[u(z)]. 
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As the quantity to be minimized, we examined the total energy flux across the plane 
z = /i[12]: 

F(u) = amSrlm[g=(r, 1)Ua(r,l) + az,,(r,l)U~(r, 1)]dr 
o ( 1 . 6 )  

(the superimposed bar denotes complex conjugation). 

The optimization problem is formulated mathematically as follows: fromamong the func- 
tions (1.4)-(1.5) given on thelinterval [0, I ], find the function u~ that minimizes the 
functional (1.6); the functions Ur(r, z), Uz(r, z), Ozr(r, z), and Ozz(r, z) which enter 

into the functional are determined from the solution of boundary-value problem (1.1)-(1.3). 

2. Reduction of Problem (1.1)-(1.6) to a Canonical Optimum-Control Problem. It is known 
that the difficulty encountered in solving optimization problems increases dramatically 
with an increase in the number of independent variables. On the other hand, the sought 
control function u(z) depends only on one space variable z. It is thus natural to attempt 
to use the Hankel transform to effect a "convolution" of the radial coordinate r and replace 
(1.1)-(1.3) by a system of ordinary differential equations in transforms of the original in- 
dependent variables. Representing the solution Ur, U z in the form 

U~ (r, z) = i J~ (ar) P (a, z) da, U~ (r, z) = S Jo (at) S (~, z) da  ( 2 . 1  ) 
0 0 

(J0  and J~ a r e  B e s s e l  f u n c t i o n s )  and h a v i n g  i n s e r t e d  i t  i n t o  ( 1 . 1 ) ,  we o b t a i n  t h e  f o l l o w i n g  
s e c o n d - o r d e r  s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  f o r  t h e  t r a n s f o r m s  P and S [ 1 1 ] :  

[~(P'  - -  a S )  l" - -  a ~ S '  - -  (~ + 2 ~ ) n ~ P  = 0,  

[ (k + 2~0S'  + Z a P l '  + a ~ P '  - -  ~ S  = 0.  ( 2 . 2 )  

H e r e ,  ~ = ~2 _ K p i ;  ~2 = az  _ KSi ;  Kp = m/ [ (X  + 2g) /p]z /2 ;  K s = ~/ (~ /9 )~ /2 ;  t h e  p r i m e s  
denote differentiation with respect to z. As a result of the transformation of (1.3), we 
find the boundary conditions for the transforms P and S at z = 0: 

()~ -t- 2 ~ ) S '  + aT.P = 1o, P '  - -  a S  --- 0, z = 0 

1o ( a )  = a 5 Jo (ar )  ] (r) r dr = P 0 ~ / ( 4 ~ )  �9 
0 

(2.B) 

We introduce the new variables Yl = --P/ai, Y2 = S/a, Ya = -~(P' - aS)/ai, Y4 = [(% + 2~)S' + 

~XP]/~, which by virtue of (1.2) remain continuous with the transition through the inter- 
faces. It follows from (2.2), (2.3) that the vector Y = {Yl, --., Y4} satisfies the first- 
order system 

y ' (a ,  z) = A(a,  u)y(a,  z); ( 2 . 4 )  

y3(a, o) = o, y~(a, o) = Po/(4~),  (2.5) 

t, ] = 1, , 4);  a n = a la  = a22 = a~3 - -  aa2 - -  a33 - -  a4t - -  aa - -  0 ,  a l ,  - -  - - 1 ,  a13 - -  ~ , ~  . - . _ 
w h e r e  A = []a,~[ . . . . . . .  a . . . . . .  1. 

- - ~ ( a ~ 2 ) ;  a4a = a ~. D u e  t o  t h e  c o n t i n u i t y  o f  t h e  v e c t o r  N, s y s t e m  ( 2 . 4 )  i s  v a l i d  o v e r  
t h e  e n t i r e  s e m i - i n f i n i t e  i n t e r v a l  0 ~ z < ~.  To c l o s e  i t ,  we s u p p l e m e n t  t h e  b o u n d a r y  c o n -  
d i t i o n s  a t  z = 0 w i t h  c o n d i t i o n s  o f  r a d i a t i o n  a t  i n f i n i t y .  E q u a t i o n s  ( 2 . 4 )  h a v e  t h e  f o l -  
l o w i n g  properties: i) the elements of matrix A are determined at z 2 0, depend on the 
initial equation of u(z), and are piecewise-constant functions; 2) Eq. (2.4) establishes 
a one-parameter family of solutions dependent on the transformation parameter a. Using 
the procedure described in [5], we can reduce the effect of the half-space z > t on the 
wave pattern in the laminated shield 0 ~ z ~ I to two boundary conditions at z = I. The 
form of the solution will differ, depending on to which of the three regions the parameter 

belongs: 0 ~ a < Kp or Kp ~ a < K S or K S ~ a < =. For example, for the first case 

y~(a, z) = Ap exp [~'l(z - -  /)] + ~'iAs exp [i?~(z -- /)], 
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g~(a, z) = i?~A~ exp [i?~(z - -  1)1 + a~Asexp [i?2(z - -  ~)], 

ya(~, z) = ~{2i71A v exp [~?~(z -  1)] + ~Asexp  [ i y ~ ( z -  l)]}, 

ya(a, z) = ~{~A v exp [i?~(z - -  l)] + 2ia~?~As exp [i?e(z --  l)]}. ( 2 . 6 )  

H e r e ,  ~ 2 = Kp2 _ a2 ;  ~22 = KS ~ _ a2 ;  ~ = 2~2 _ KS2; Ap, A S a r e  unknown a r b i t r a r y  c o n s t a n t s .  
H a v i n g  t h e  s o l u t i o n  i n  t h e  f o r m  ( 2 . 6 )  e n s u r e s  s a t i s f a c t i o n  o f  t h e  c o n d i t i o n s  o f  r a d i a t i o n  
a t  i n f i n i t y .  I f  s o l u t i o n  ( 2 . 6 )  i s  w r i t t e n  f o r  z = l, i f  hp and A S a r e  e x p r e s s e d  t h r o u g h  
t h e  f i r s t  two e q u a t i o n s ,  and  i f  we i n s e r t  t h e s e  q u a n t i t i e s  i n t o  t h e  t h i r d  and  f o u r t h  e q u a -  
t i o n s ,  we o b t a i n  t h e  b o u n d a r y  c o n d i t i o n s  

~3(~, l) : gll~l(~, l) @ g12~2(~, [), 
= z) + ( 2 . 7 )  

where gl~ = iD~IKs2A; g12 = D(~ + 2YIY2)A; g21 = ~2g12; g22 = i~2Ks2A; A = (~2 + ~iY2)-l. 

When Kp ~ ~ < KS, the boundary conditions at z = ~ have the same form (2.7) but with the 

following values gij (i, j = i, 2): gll = -iDqKs251, gl2 = ~(~ + 2i7~D)51, g21 = ~2g12, 

g22 = i~u A~ = (~2 + iu It can be seen from further considerations that solu- 

tions (2.4) are not used for ~ > K S . Thus, the value of Y(~, z) on the segment 0 ~ z ~ l 
is found from the solution of boundary-value problem (2.4)-(2.5), (2.7). 

To finally formulate the optimization problem in terms of transforms, we express them 
through the functional (1.6) being minimized. To do this, we need to use the transformation 
formulas to write the following initial quantities 

U~ (r, z) = - -  y a2J1 (ar) yj (a, z) da, U~ (r, z) = (zJ o (ar) gz (cz, z) da, 
0 0 

a~ (r, z) = - -  r (ar) g3 (a, z) da, a~ (r, z) = ~ a J  o (ar) yt  (a, z) d~ 
0 0 

( 2 . 8 )  

and insert them into integral (1.6). Then, with allowance for the Parseval equality, the 
minimizing functional is written as 

F (u) = n o  Im ~ a [g~ (a, l) yt (a, l) + a ~ x  (a, l) ya (a , / ) ]  da. ( 2 . 9 )  
0 

Direct numerical integration of (2.8)-(2.9) is impossible due to the fact that the integrands 
contain a finite number of poles af, which are zeros of the Rayleigh denominator R(~) = 0 
[ii, 12]. The presence of the poles is connected with the formation of Rayleigh and Lamb 
waves on the surface z = 0 and the boundary layers. The number of poles and the values 
of af generally depend on the structure of the laminated medium and frequency. It can be 
shown that 

Im f (=, Z) 0 + Z) (=, Z)] d= = O. 

Here, KS ~ = ~/(~o/po)i/2 is the second wave number for the elastic half-space z > 
follows from this that the minimizing functional has a definite integral 

F (u) = ~ o  Im ~ a [g2 (cr l) g~ (a, l) + =~y~ (a, l) Y3 (a , / ) ]  da 
0 

t .  It 

(2.1o) 

with an integrand that does not contain poles. We finally formulate the original optimiza- 
tion problem in canonical Pontryagin form: from among piecewise-constant functions (1.4) 
with a whole-number range of values (1.5), find u~ (0 ~ z ~ I ) minimizing the func- 
tional (2.10). The functions Yi(~, l ), (i = 1 .... , 4) entering into the integrand are 
found for each 0 ~ ~ ~ KS ~ from the solution of boundary-value problem (2.4)-(2.5), (2.7). 
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3. Necessary Optimality Conditions. To deduce these conditions, it is necessary to 
construct a variation of functional (2.10) generated by variation of the control function 
u(z). Classical methods of variational calculus cannot do this, since - by virtue of 
(1.5) - the control function u(z) does not have infinitesimals in a uniform norm of varia- 
tions. By the term "perturbed control function," we will mean the function [13] 

u*(z) = {~; 
~ A ,  

u; z~[O, l l \M,  ( 3 . 1 )  

where M c [0, l ] is a set of small measure; mes M = ~ ~ l; ~ > 0 is an infinitesimal of 
the first order. The principal increment of functional (2.10), generated by needle varia- 
tion {M, ~}, has the form 

6F (M, ~) = .[ [H (y, 4,  u) - -  H (y, 4, ~)l dz. 
( 3 . 2 )  

The Hamiltonian 

H (y, 4, u) = He Y3~ + ~ Y4~2 + (Y4~3 - -  
0 

- -  or - -  p~o * (y~4a + u2%)+ -- ~4~ (~ + ~ ) ~ ,  + 2~ ~'~V3- + 

+ ~z * (y~% + y~%) --  (~ ,~ + g~%)[ da. 
J 

( 3 . 3 )  

The conjugate vector function 4 = {~i} (i = 1 ..... 4) is found from the solution of the 
conjugate boundary-value problem 

4' (~ ,  z) = - -A*(~ ,  u)4(~,  z), 

41(r 0) = 0, ~)1(o~, l) + gn43(ct, I) ~- g,~44(a, l) ---- 2n~o=aQ1, ( 3 . 4 )  

~(r 0) = 0, 42(0t, l) + gl~48(a, l) -]- g2~4(o~, l) = 2~(or162 

Here 

[ I m ( g n ) ~ ( a ,  1), 0 ~ - ~ a ~ K  ~ 

O~ = t im (g,0 yl (a, 0 + Im (g12) Y2 (a, I), K ~ < a ~ K~; 

J im (g2~)_y~ (cz,/), O•a<.K~ 
Q2 = [ i  m (g~l) Yl (a, l) + Im (g22) Y~ (a, l), K ~ < a <~. g ~ .  

If u(z) = u~ then 5F e 0 for all M and ~ e A. Following from this are the necessary 
optimality conditions in the form of Pontryagin's maximum principle: let u~ be an 
optimum control function minimizing functional (2.10), and let y(~, z), 0 ~ ~ ~ KS ~ 0 
z ~ I be the corresponding family of solutions of boundary-value problem (2.4)-(2.5), (2.7). 
Then there exists a family of solutions ~ (~, z) of conjugate boundary-value problem (3.4) 
such that the Hamiltonian (3.3) constructed with it reaches its maximum value with respect 
to the argument u of the optimal control function for almost any z e [0, t ]: 

H (y, 4, u~ = max H (y, 4, u). ( 3 . 5 )  
u ~ A  

4. C o m p u t a t i o n a l  A l g o r i t h m .  The c o m p u t a t i o n a l  p r o c e d u r e  u s e d  t o  f i n d  t h e  opt imum 
s o l u t i o n  c o n s i s t s  o f  c o n s t r u c t i n g  a m i n i m i z i n g  s e q u e n c e  o f  c o n t r o l  f u n c t i o n s  u n ( z ) ,  n = 
1, 2,  . . . .  The t r a n s i t i o n  t o  t h e  n e x t  a p p r o x i m a t i o n  i s  made by s e l e c t i n g  a s e t  o f  s m a l l  
m e a s u r e  M and a v a l u e  ~ e A on t h i s  s e t  f o r  which  t h e  p e r t u r b e d  c o n t r o l  f u n c t i o n  ( 3 . 1 )  r e -  
duces  t h e  f u n c t i o n a l  ( 2 . 1 0 ) .  T h e r e  a r e  s e v e r a l  a l g o r i t h m s  f o r  c o n s t r u c t i n g  a m i n i m i z i n g  
s e q u e n c e ,  t h e s e  a l g o r i t h m s  d i f f e r i n g  in  t h e  method u s e d  t o  a s s i g n  t h e  s e t  M. We w i l l  de -  
s c r i b e  one o f  t h e  mos t  e f f i c i e n t  v a r i a n t s  [ 1 4 ] .  Assume t h a t  we know t h e  c u r r e n t  a p p r o x i m a -  
t i o n  u n ( z )  and t h e  c o r r e s p o n d i n g  s o l u t i o n s  Y n ( a ,  z)  and ~ n ( ~ ,  z)  o f  t h e  d i r e c t  and con -  
j u g a t e  p r o b l e m s .  We s u b d i v i d e  t h e  s egmen t  [0 ,  l ] i n t o  a s u f f i c i e n t l y  l a r g e  number  o f  
e q u a l  i n t e r v a l s  Az i = !l /N = hz ( i  = 1 . . . . .  N) ,  Az i = z i +  1 - z i .  We d e t e r m i n e  u ( z )  and 
w(~, z): 
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TABLE i 

No. of 
material ~. t0 -Io 

i 0,145 
2 2,50 
3 3,90 

%,i0--1o 

t,15 
12,22 
16,6 

p.lO--3 

1,20 
2,30 
2,65 

No. of 
material 

~.I0--I0 

2,50 
2,66 
2,73 

~. 10--10 

16,00 
t4,80 
i2,30 

p . t 0 - - 3  

2,70 
2,50 
2,2i 

[ n - - n  U \  u(z) = a r g m a x H k y  ,~p , ), 
u E A  

w(~, z) = H(y-, ,- ,  ~ ) -  H(y-, ~-, ~-) ~> 0. 

It is evident that the variation of functional (3.2) can be written in the form 

M 

If u n is nonoptimal, then we can find an M small enough so that the variation of 6F will 
become less than zero. We proceed as follows in order to best choose the set M. We desig- 
nate w i = w[u(z i + Az/2), z i + Az/2] (i = 1 ..... N). We arrange the values of w i in des- 

cending order. As a result, we obtain the set Wjk , k = 1 ..... N (Wjk+1 _< Wjk), where Jk 

denotes the number of the interval. We form the sets M i (i = 1 ..... N) by the rule 
i 

Mi = U Az& 
h=l 

(obviously, mes M I = Az, mes M N = l ) and we introduce 

u~ (z) = t~"; z ~ Mi. 

We designate i ~ = argminF(uin). Then un+1(z) = ui0n(z We choose un+l(z) as the new 
i 

control function. We calculate the corresponding yn+1~+1 for it, construct the new 
Hamiltonians, find u and w, and so forth. The process ends when w i = 0, i = I ..... N. 
This condition is equivalent to satisfaction of (3.5). 

5. Sample Calculations. Choosing from among the materials shown in Table i, we need 
to synthesize a nonuniform shield, with a total thickness I = 0.i m, that will minimize 
the total energy flux in the elastic half-space z > l, from a concentrated harmonic force 
of unit amplitude and the frequency m = 2~ 2000 Hz. The properties of the elastic half- 
space are assigned: ~ = 10.66"109 N/m 2, ~ = 1.83"109 N/m 2, p = 917 kgf/m 3. In calculat- 

ing the Hamiltonian (3.3), we subdivided the interval [0, KS ~ ] of integration over a into 
i0, 15, and 20 parts and replaced the integral by the corresponding partial sums. Given 
such subdivisions, the values of the test functional differed by no more than 2%. The cal- 
culations revealed that the optimum shield was a two-layer shield: the first layer, with 
a thickness of 2.4"10 -2 , is made of the first material in the table; the second layer, with 
a thickness of 7.6"10 -2 m, is made of the fourth material. The efficiency of the optimum 
shield is evaluated by the quantity e = F~ where F~ t is the total energy flux in 
the half-space z > Z in the direction of the z axis when the optimum shield is present; 
F 0 is the same in the absence of the shield. For the example we have calculated, 8 = 
0.268. If the concentrated force in our example acts with the frequency m = 2v 5000 Hz, 
then the optimum shield consists of four layers: the first, 1.6.10 -2 m thick, is made of 
the first material in the table; the second, 2.5-10 -2 m thick, is made of the fourth 
material; the third, 4.4"10 -2 m thick, is made of the third material; the fourth, 1.5.10 -2 
m thick, is made of the fourth material. The efficiency of this shield is equal to e = 
0.099. 
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PLASTIC DEFORMATION OF AN ISOTROPICALLY STRAIN-HARDENING 

POLYCRYSTALLINE MATERIAL 

O. A. Volokhovskaya and V. V. Podalkov UDC 539.374 

It is known that the features of the elastoplastic deformation of metals are deter- 
mined by their polycrystalline structure. Thus, the equations that describe the deforma- 
tion of the polycrystal should be derived on the basis of study of the processes that take 
place within its grains. It has been established experimentally that, at moderate tem- 
peratures, plastic deformation occurs mainly by the mechanism of translational crystallo- 
graphic slip. Slip is anisotropic and leads to strain-hardening of a single crystal. This 
strain-hardening is expressed in an increase in the limiting shear stress in both active 
(active strain-hardening) and passive (latent strain-hardening) systems and must be taken 
into account when choosing the corresponding strain-hardening law. The elastic and plastic 
anisotropy of crystallites and intergranular interactions occurring throughout the deforma- 
tion history of the material cause the fields of.local stresses and strains in it to be 
nonuniform. Thus, the equation that connects macroscopic stresses and strains should be 
determined by averaging relations between the corresponding local fields over the entire 
volume of the specimen. There is a fairly large number of consistent theories in which 
the researcher, in the course of deriving the governing equation, made a detailed study 
of one of the above-mentioned aspects of the plastic deformation of polycrystals [1-5]. 
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